🍪
Este sitio web utiliza cookies propias y de terceros para mejorar los servicios que ofrece y optimizar la navegación. Si usted continua navegando, consideramos que acepta su uso. Más información

Cambios

Saltar a: navegación, buscar

Geofísica

36 bytes añadidos, 08:00 22 jul 2021
m
Texto reemplazado: «jpg|left|thumb|» por «jpg|left|thumb|300px|»
En el siglo XVII Galileo obtiene experimentalmente que los espacios recorridos por los cuerpos en caída libre son proporcionales al cuadrado de los tiempos recorridos y Newton formula la ley de la gravitación universal, según la cual dos cuerpos se atraen con una fuerza proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia entre ellos. Todos los cuerpos situados en la superficie terrestre, conjuntamente con esta fuerza de atracción, se encuentran sometidos a una fuerza centrífuga por efecto de la rotación terrestre. La composición entre estas dos fuerzas es lo que se denomina fuerza de gravedad. La gravimetría se puede definir como la ciencia cuyo objetivo es determinar y estudiar el campo gravitatorio terrestre y de otros cuerpos celestes en función de la posición y del tiempo.
{{ANETextoAsociado50|titulo=Gravímetro|contenido=[[Archivo:Espana Gravimetro-Worden-y-LaCoste-Romberg 2016 imagen 16831 spa.jpg|left|thumb|300px|Imagen de gravímetro Worden y LaCoste Romberg. 2016. España.]]El gravímetro es un instrumento que se utiliza para medir el campo gravitacional local de la Tierra y detectar así anomalías causadas por estructuras geológicas cercanas o por la propia forma de la Tierra. Se basa en medir los cambios (estiramiento o contracción) que experimenta un muelle helicoidal que sostiene un peso, con el fin de conocer la gravedad local. La longitud del muelle es proporcional a la tensión que experimenta.}}
Para la medida de la gravedad se utilizan dos métodos: dinámicos y estáticos. En los métodos dinámicos se observa el movimiento de un cuerpo bajo la acción de la gravedad, midiendo directamente el tiempo que dicho cuerpo necesita para pasar de una situación registrada a otra. En los métodos estáticos se observa un cambio en la posición de equilibrio de un cuerpo bajo la acción de la fuerza de la gravedad y de otra fuerza niveladora.
Las primeras medidas gravimétricas de cierta precisión en el mundo son las realizadas por Plantamour en el año 1864 en Suiza. Las primeras en España son de Barraquer en la biblioteca del Observatorio Astronómico de Madrid en 1883, con un error de 1,6 miligal (''Gal'' unidad denominada así en honor a Galileo equivalente a 1 cm s<sup>-2</sup>). En la actualidad, las redes gravimétricas de orden cero y de primer orden son observadas con los gravímetros absolutos, siendo densificadas por los gravímetros relativos (orden inferior).
[[Archivo:Espana Tectonica-desde-la-dorsal-atlantica-hasta-Argelia 2016 mapa 14011 spa.jpg|left|thumb|300px|Mapa de tectónica desde la dorsal atlántica hasta Argelia. 2016. [http://centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Espana_Tectonica-desde-la-dorsal-atlantica-hasta-Argelia_2016_mapa_14011_spa.pdf PDF]. [http://centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Espana_Tectonica-desde-la-dorsal-atlantica-hasta-Argelia_2016_mapa_14011_spa.zip Datos]]]
[[Archivo:Espana Anomalias-gravimetricas-Bouguer-en-la-peninsula-iberica-y-baleares 1993 mapa 13503 spa.jpg|right|thumb|300px|Mapa de anomalías gravimétricas Bouguer en la península ibérica y baleares. 1993. [http://centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Espana_Anomalias-gravimetricas-Bouguer-en-la-peninsula-iberica-y-baleares_1993_mapa_13503_spa.pdf PDF]. [http://centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Espana_Anomalias-gravimetricas-Bouguer-en-la-peninsula-iberica-y-baleares_1993_mapa_13503_spa.zip Datos]]]
Las aplicaciones de la gravimetría son, entre otras, geodésicas, geofísicas, geodinámicas y metrológicas. En las primeras podemos englobar la determinación de las altitudes geopotenciales, que representan la forma real de la Tierra, el geoide y la curvatura del campo de la gravedad. En las segundas podemos incluir el estudio de la distribución y composición de las masas de la Tierra a partir del estudio de anomalías de la gravedad. Los mapas de anomalías gravimétricas de aire libre, no incluido en este atlas, y de Bouguer nos proporcionan esta información. Se puede deducir también una interpretación de procesos tectónicos y de la isostasia terrestre. Las variaciones con el tiempo en la rotación terrestre, mareas terrestres, carga oceánica sobre la masa continental, dinámica del manto y núcleo terrestres, son algunas de las relaciones de esta ciencia con la geodinámica. Entre las aplicaciones metrológicas se encuentran las calibraciones de transductores de presión y células de carga, determinación de referencia de los patrones primarios y secundarios de masa, determinación de la constante gravitatoria G, así como la calibración de gravímetros relativos y el establecimiento de líneas de calibración.
{{ANETextoAsociado|titulo=Espesor de la corteza terrestre|contenido=[[Archivo:Espana Espesor-de-la-corteza-terrestre 2004 imagen 14010 spa.jpg|left|thumb|300px|Imagen de espesor de la corteza terrestre. 2004. España.]]La corteza terrestre, como expresión de la superficie terrestre, refleja en su espesor la orogenia que se ha producido en ella. El espesor de la corteza terrestre aumenta bajo las cordilleras jóvenes y disminuye en las zonas oceánicas. Tiene un espesor variable que oscila entre 5 km en el fondo oceánico hasta 70 km en las zonas montañosas de los continentes. La determinación del espesor se realiza mediante prospección sísmica a partir de perfiles de alcance regional, tanto en zonas continentales como marinas.
Los resultados, como los que expresa la imagen adjunta, permiten evaluar el desarrollo vertical de las cordilleras activas y apreciar los procesos geológicos que han estructurado la península ibérica. La corteza parece fuertemente engrosada en Pirineos y la Cordillera Cantábrica (>40 km) y existe también un engrosamiento cortical, aunque menor, en el resto de los sistemas montañosos. Por el contratrio, la corteza adelgaza en el surco de Valencia y el mar de Alborán.
El geomagnetismo estudia el campo magnético terrestre y sus variaciones. El campo magnético que se observa tiene dos orígenes, uno interno y otro externo. El campo interno es semejante al producido por un dipolo magnético situado en el centro de la Tierra con una inclinación de 10,5º respecto al eje de rotación. Los polos geomagnéticos son los puntos en los que el eje del dipolo intersecta a la superficie terrestre, y el ecuador magnético es el plano perpendicular a dicho eje. Esta componente presenta una variación en el tiempo, llamada variación secular, que es registrada de forma continua en los observatorios.
[[Archivo:Espana Declinaciones-magneticas 2005 mapa 13295 spa.jpg|left|thumb|300px|Mapa de declinaciones magnéticas. 2005. España. [http://centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Espana_Declinaciones-magneticas_2005_mapa_13295_spa.pdf PDF]. [http://centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Espana_Declinaciones-magneticas_2005_mapa_13295_spa.zip Datos]]]
La componente de origen externo es debida principalmente a la actividad del Sol sobre la ionosfera y la magnetosfera, siendo las más importantes la variación diaria y la anual con períodos de 24 horas y 365 días, respectivamente. Otras variaciones de origen externo son: la lunar, pulsaciones magnéticas, tormentas magnéticas, bahías, efectos cromosféricos, etc.
Las soluciones obtenidas para las ondas elásticas representan dos tipos de ondas (llamadas internas o de volumen) que se propagan con distinta velocidad. Las de mayor velocidad, y por tanto las primeras en llegar, son las llamadas ondas P. Las segundas en aparecer, debido a su menor velocidad, son las ondas S, que tienen carácter transversal. El estudio de estas ondas se realiza mediante las leyes de reflexión y refracción, ya que la Tierra está formada por capas de distinto material. Sus trayectorias y tiempos de llegada se determinan, bien considerando capas planas, cada una de velocidad constante o aumentando con la profundidad, o bien considerando la Tierra esférica.
[[Archivo:Espana Estaciones-sismicas 2015 mapa 13324 spa.jpg|left|thumb|300px|Mapa de estaciones sísmicas. 2015. España. [http://centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Espana_Estaciones-sismicas_2015_mapa_13324_spa.pdf PDF]. [http://centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Espana_Estaciones-sismicas_2015_mapa_13324_spa.zip Datos]]]
En la superficie libre de la Tierra y en otras discontinuidades de la corteza, se producen otro tipo de ondas que, por propagarse a lo largo de estas superficies, reciben el nombre de ondas superficiales. Estas ondas se propagan con velocidades inferiores a las de la onda S y su amplitud decrece con la profundidad. De estas ondas existen dos tipos: las ondas Rayleigh, de movimiento vertical, y las ondas Love, de movimiento horizontal, cuyos nombres corresponden a dos científicos ingleses del siglo XIX.
La primera forma que se definió para cuantificar el tamaño de un terremoto fue a partir de los daños ocasionados. En estas observaciones está basado el concepto de intensidad, que se puede definir como la fuerza con que se siente un terremoto. La medida de la intensidad es algo subjetiva; no obstante, es un parámetro de gran interés en sismología y en particular en ingeniería, por lo que se han definido numerosas escalas de intensidad. En Europa se adoptó la escala EMS-98 de doce grados, equivalente a la Mercalli modificada. La intensidad es una medida indirecta y no da una idea precisa de la energía liberada por un terremoto, pues un terremoto muy superficial puede producir intensidades muy altas y sin embargo liberar una energía muy pequeña. Por esta razón, para medir el tamaño de un terremoto es necesario cuantificar, de una forma instrumental, la energía que se libera en el foco. Esta idea llevó a C. F. Richter a la creación de la escala de magnitudes, que está basada en que la amplitud de las ondas sísmicas está relacionada con la energía liberada en el foco.
[[Archivo:Espana Peligrosidad-sismica 2015 mapa 13990 spa.jpg|left|thumb|300px|Mapa de peligrosidad sísmica. 2015. España. [http://centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Espana_Peligrosidad-sismica_2015_mapa_13990_spa.pdf PDF]. [http://centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Espana_Peligrosidad-sismica_2015_mapa_13990_spa.zip Datos]]]
El seguimiento de la actividad sísmica en España se realiza desde principios del siglo XX mediante la Red Sísmica del IGN (ver mapa ''[[:Archivo:Espana Estaciones-sismicas 2015 mapa 13324 spa.jpg|Estaciones sísmicas]]''). Las estaciones que conforman la red han evolucionado, gracias al desarrollo de la electrónica y de la informática, desde el inicio de los grandes observatorios a principios del siglo XX, con sismómetros de 1.000 kilos de masa, hasta estaciones de tamaño muy reducido, muy alta amplificación y poco mantenimiento. La nueva red de estaciones está diseñada con las siguientes características: transmisión digital a un centro de recepción (vía satélite, GPRS o internet), cobertura de todo el territorio nacional, datos sísmicos digitales de alta resolución con tres componentes y banda ancha, y tiempo absoluto GPS/UTC. La red es la responsable de la observación y detección de los movimientos sísmicos ocurridos en territorio nacional y áreas próximas y permite la difusión de las características de los terremotos muy pocos minutos después de su ocurrencia. El centro de recepción de datos esta operativo durante las 24 horas del día los 365 días del año, por turnos de personal cualificado que, en función del tamaño del terremoto, informa a los organismos competentes, mediante un protocolo de actuación. Asimismo, toda la información sísmica que se genera es colocada, casi en tiempo real, en la [http://www.ign.es/web/ign/portal/sis-area-sismicidad página web] del IGN, cuyo acceso es público.

Menú de navegación