Este sitio web utiliza cookies propias y de terceros para mejorar los servicios que ofrece y optimizar la navegación. Si usted continua navegando, consideramos que acepta su uso. Más información

Cambios

Saltar a: navegación, buscar

Discusión:Geofísica

134 bytes añadidos, 07:54 16 oct 2024
sin resumen de edición
La razón por la que los objetos caen al suelo cuando se lanzan es la misma que explica por qué las personas no salimos disparadas al espacio exterior cuando damos un salto o por qué los elementos que pueblan la Tierra parecen estar pegados a su superficie. Este fenómeno no es otro que la fuerza de la gravedad.<br>
La gravedad, la gravitación y la fuerza de la gravedad son conceptos relacionados pero distintos. La gravitación o fuerza gravitatoria es el fenómeno que Newton describió como una fuerza de atracción entre dos cuerpos que es proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que los separa. Por otro lado, la gravitación ejercida por la Tierra y por otros cuerpos celestes, así como la fuerza centrífuga debida a la rotación de la Tierra, dan lugar a la fuerza de la gravedad. Esta fuerza hace que todo cuerpo que esté sobre o cerca de la superficie terrestre experimente una aceleración. Esta aceleración se llama gravedad, cuya medida y estudio es el objeto de la gravimetría.<br>
Cuando Galileo realizó su legendario experimento en la torre de Pisa lo que observó fue el efecto que la fuerza de la gravedad imprime en los cuerpos, que es lo que comúnmente se conoce como gravedad. Al tratarse de una magnitud derivada del tiempo y la distancia, la unidad de medida de la gravedad es el m/s2s<sup>2</sup>. Sin embargo, en el ámbito de la geodesia y la geofísica es muy común emplear el ''Gal '' como unidad de medida (1 Gal = 10<sup>-2 </sup> m/s2s<sup>2</sup>). Esta unidad se creó, precisamente, en honor al científico italiano.<br>
La gravimetría no ha sido ajena a los avances tecnológicos alcanzados a lo largo del pasado siglo. Durante más de 300 años la medida de la gravedad se llevó a cabo mediante el uso de péndulos. Sin embargo, el desarrollo de nuevas tecnologías hizo que a mediados del siglo XX comenzase la fabricación de los instrumentos empleados en la actualidad. Los gravímetros modernos han servido para ampliar el conocimiento que tenemos del campo de la gravedad y extender significativamente las aplicaciones de su estudio.<br>
Los gravímetros se pueden clasificar en dos grupos: absolutos y relativos. Ambos tipos incorporan una masa testigo y un sensor que determina cómo se comporta esa masa bajo la acción del campo de la gravedad. Los únicos gravímetros capaces de medir la gravedad en un lugar y momento concretos son los absolutos, mientras que los relativos permiten determinar variaciones de la gravedad entre dos o más puntos (modo itinerante) o en un mismo lugar a lo largo del tiempo (modo estacionario).<br>
Los gravímetros absolutos miden la gravedad usando las unidades de distancia y tiempo. Estos instrumentos observan el recorrido descrito por una masa en caída libre situada en una cámara de vacío, obteniendo incrementos de distancia con un láser de helio-neón e incrementos de tiempo con un reloj atómico de rubidio. El valor de la gravedad se calcula usando los pares de distancia y tiempo observados sobre la ecuación del movimiento uniformemente acelerado. En la actualidad, el resultado de las observaciones absolutas se puede determinar con una incertidumbre que varía entre los 10<sup>-7 </sup> m/s2 s<sup>2</sup> y los 10<sup>-8 </sup> m/s2s<sup>2</sup>, en función de las características del instrumento empleado y de las condiciones del lugar de medida.<br>
Por otro lado, los gravímetros relativos usan una fuerza que se contrapone a la de la gravedad. Este tipo de instrumentos observan únicamente una de las unidades fundamentales de la aceleración, bien sea la distancia o el tiempo, considerando la otra unidad como fija. La contrafuerza empleada trata de mantener a la masa testigo en una posición de equilibrio que únicamente se ve afectada por las variaciones de la gravedad, de modo que observando los cambios en la posición de la masa se puede calcular la variación del fenómeno que la perturba. Según la ley de la elasticidad de Hooke, la elongación experimentada por un muelle es proporcional a la fuerza aplicada sobre el mismo. Este hecho explica que la mayoría de los gravímetros relativos empleen un muelle como fuerza opuesta. Sin embargo, existe otro tipo de gravímetros relativos que emplean una fuerza magnética para mantener en equilibrio a la masa testigo: los gravímetros superconductores. La elección del sistema de levitación magnética frente a los sistemas de muelle hace que estos instrumentos puedan observar las variaciones de la gravedad con más precisión, razón por la que son empleados en el estudio de las mareas terrestres y de fenómenos geodinámicos.<br>
Como se ha señalado, la gravedad que experimenta un objeto depende, fundamentalmente, de la distribución de masas alrededor del cuerpo en cuestión. Por lo tanto, de su observación se puede inferir información muy valiosa sobre nuestro planeta, razón por la que la gravimetría adquiere especial importancia en disciplinas como la geodesia o la geofísica. La medida de la gravedad también se usa en otros estudios y aplicaciones, como la metrología (creación de los patrones de fuerza y sus unidades derivadas), la creación de redes de vigilancia volcánica, la búsqueda de recursos minerales e hidrocarburos o la arqueología. En astronomía y astronáutica, el conocimiento de la gravedad se usa para calcular las órbitas de cuerpos celestes naturales (planetas, luna) y artificiales (satélites, sondas y naves espaciales). Además, los registros continuos de la gravedad son esenciales para estudiar las mareas terrestres y para determinar cambios en la orientación de la Tierra.<br>
En España, el Instituto Geográfico Nacional desarrolla y mantiene la Red Española de Gravimetría Absoluta (REGA). Esta red, que está compuesta por más de 130 estaciones, cumple una doble función. Por un lado, sirve de apoyo a varias de las infraestructuras mantenidas por el IGN y, además, ofrece datos de calidad a cualquier otra entidad pública o privada cuya actividad requiera del conocimiento preciso de la gravedad, bien sea con fines geodésicos, geológicos, geofísicos o metrológicos. (ver mapa ''[[:Archivo:XXX|Red de Gravimetría Absoluta y gravímetros superconductores]]'').<br>
{{ANETextoAsociado
|titulo=Espesor de la corteza terrestre
|contenido=
[[Archivo:Enelaboracion.jpg|left|thumb|300px|'''14010'''Espesor de la corteza terrestre]]
La corteza terrestre, como expresión de la superficie terrestre, refleja en su espesor la orogenia que se ha producido en ella. El espesor de la corteza terrestre aumenta bajo las cordilleras jóvenes y disminuye en las zonas oceánicas. Tiene un espesor variable que oscila entre 5 km en el fondo oceánico hasta 70 km en las zonas montañosas de los continentes. La determinación del espesor se realiza mediante prospección sísmica a partir de perfiles de alcance regional, tanto en zonas continentales como marinas.<br>
Los resultados, como los que expresa la imagen adjunta, permiten evaluar el desarrollo vertical de las cordilleras activas y apreciar los procesos geológicos que han estructurado la península ibérica. La corteza parece fuertemente engrosada en Pirineos y la Cordillera Cantábrica (>40 km) y existe también un engrosamiento cortical, aunque menor, en el resto de los sistemas montañosos. Por el contrario, la corteza adelgaza en el surco de Valencia y el mar de Alborán.<br>
444
ediciones

Menú de navegación